PUBLICATIONS

[PDFs available on Researchgate]

Strother, L. (2019) A neural basis of the serial bottleneck in visual word recognition. PNAS

Zhou, Z., Vilis, T. and Strother, L. (2019) Functionally separable font-invariant and font-sensitive neural populations in occipitotemporal cortex. Journal of Cognitive Neuroscience.

Whitney, C., Ross, P., Zhou, Z., and Strother, L. (2019) A novel hypothesis for the original functionality of the visual word form area: processing shape sequences.

Zhou, Z., Whitney, C. and Strother, L. (2019) Embedded word priming elicits enhanced fMRI responses in the visual word form area. PLoS ONE.

Harrison, M.T. and Strother, L. (under review) The right half of a face is processed holistically when the left half is not.

Nah, J., Neppi-Modona, M., Strother, L., Behrmann, M. and Shomstein, S. (2018) Object width modulates object-based attentional selection. Attention, Perception & Psychophysics.

Strother, L., Zhou, Z., Coros, A.M., and Vilis, T. (2017). An fMRI study of visual hemifield integration and cerebral lateralization. Neuropsychologia. doi.org/10.1016/j.neuropsychologia.2017.04.003

Erlikhman, G., Strother, L.,  Barzakov, I. and Caplovitz, G.C. (2017). On the legibility of mirror-reflected and rotated text. Symmetry. doi:10.3390/sym9030028

Zhou, Z. and Strother L. (2017). Distinct effects of contour smoothness and observer bias on visual persistence. Journal of Vision.  doi:10.1167/17.2.8

Vanston, J.E. and Strother L. (2017). Sex differences in the human visual system. Journal of Neuroscience Research. doi: 10.1002/jnr.23895

Strother, L., Coros, A.M., and Vilis, T. (2016). Cortical representation of whole hemifield-split words and word parts. Journal of Cognitive Neuroscience.  28(2):252-260 (doi: 10.1162/jocn_a_00900)

Jung, C.E., Strother, L. and Hutsler, J.J. (2016). Atypical asymmetry for processing human and robot faces in autism revealed by fNIRS. PLoS ONE.

McCarthy, J.D., Strother, L. and Caplovitz, G.P. (2015). Spatiotemporal Form Integration: Sequentially presented inducers can lead to representations of stationary and rigidly rotating objects. Attention, Perception & Psychophysics

Strother, L. Killebrew, K.W., and Caplovitz, G.P. (2015). The Lemon Illusion: Seeing curvature where there is none. Frontiers in Human Neuroscience

Mruczek, R.E.B., Blair, C.D., Strother, L. and Caplovitz, G.P. (2015). The Dynamic Ebbinghaus: image size uncertainty caused by motion dynamics greatly enhances the classic contextual size illusion. Frontiers in Human Neuroscience.

Strother, L. and Alferov, D.(2014) Inter-element orientation and distance influence the duration of persistent contour integration. Frontiers in Psychology. doi: 10.3389/fpsyg.2014.01273.

Snow, J.C., Strother, L. and Humphreys, G. (2014). Haptic shape representation in visual cortex. Journal of Cognitive Neuroscience. 26(5):1154-67.doi: 10.1162/jocn_a_00548.

Strother, L., Coros, A., Medendorp W.P. and Vilis, T. (2012). Double representation of the wrist and elbow in human motor cortex. European Journal of Neuroscience. 36: 3291-3298 (doi:10.1111/j.1460-9568.2012.08241.x)

Strother, L., Lavell, C. and Vilis, T. (2012). Figure-ground representation and its decay in primary visual cortex. Journal of Cognitive Neuroscience, 24(4):905-914 (doi: 10.1162/jocn_a_00190).

Strother, L. and Kubovy, M. (2012). Structural salience and the nonaccidentality of a gestalt. Journal of Experimental Psychology: Human Perception & Performance. (doi: 10.1037/a0027939)

Strother, L., Mathuranath, P., Aldcroft, A., Lavell, C., Goodale, M. and Vilis, T. (2011). Face inversion reduces the persistence of global form and its neural correlates. PLoS ONE, 6(4): e18705 (doi: 10.1371/journal.pone.001870).

Strother, L., Aldcroft, A., Lavell, C. and Vilis, T. (2010). Equal degrees of object selectivity for upper and lower visual field stimuli. Journal of Neurophysiology, 104: 2075-2081.

About strotherlab

Lars Strother studies human sensory, cognitive and motor systems using behavioral methods and neuroimaging, He is particularly interested in the mechanisms by which nervous systems interpret sensory information for purposes of object recognition, interaction with the environment and the sheer joy of perception.
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *